1 Pfaffian System and Involutivity

Let M be a manifold. Pfaffian system (I, J) with independence condition J satisfies the following conditions on M:

$$\theta^{\alpha} = 0, \quad \alpha = 1, \dots, s,$$

 $\Omega = \omega^{1} \wedge \dots \wedge \omega^{p} \neq 0$
where $I = \operatorname{span}\{\theta^{1}, \dots, \theta^{s}\}$ and $J = \operatorname{span}\{\omega^{1}, \dots, \omega^{p}\}$.

Definition 1.1. For each q = 1, ..., p, a q-dimensional integral manifold is a manifold N of dimension q such that $\theta^{\alpha}|_{N} = 0$, $\alpha = 1, ..., s$, which implies that $d\theta|_{N} = 0$, so that $\phi|_{N} = 0$, for any ϕ in \mathfrak{I} , where \mathfrak{I} is the differential ideal generated by θ^{α} 's.

Definition 1.2. An integral element (x, E) of dimension q is a qdimensional subspace E of $T_x M$ such that $\phi|_E = 0$ for any $\phi \in \mathfrak{I}$. $V_q(\mathfrak{I})$ is defined to be the set of all q-dimensional integral elements for $q = 1, \ldots, p - 1$. V(I, J) is defined to be the set of p-dimensional integral elements (x, E) such that $\Omega|_E \neq 0$.

Let (x, E) be a q-dimensional integral element of \mathfrak{I} . Let e_1, \ldots, e_q be a basis of E. Its **polar equations** are linear equations for the subspace of all $v \in T_x M$ such that $\langle \phi(x), e_1 \wedge \cdots \wedge e_q \wedge v \rangle = 0$ for any (q+1)-form ϕ in \mathfrak{I} .

Definition 1.3. An integral element (x, E) is **K-regular** if (x, E) is a smooth point of $V_q(\mathfrak{I})$ and the rank of the polar equations is constant near (x, E). A **regular flag** of E is a sequence of K-regular elements such that $(0) = E^0 \subset E^1 \subset \cdots \subset E^{p-1} \subset E^p = E$.

Definition 1.4. A Pfaffian system (I, J) is **involutive** if a general integral element $(x, E) \in V(I, J)$ admits a regular flag.

Theorem 1.5 (Cartan-Kähler, [?]). Let M be a C^{ω} manifold and \mathfrak{I} be a C^{ω} differential ideal. Suppose that $(x, E) \in V(I, J)$ has a regular flag. Then there exists a C^{ω} integral manifold N of dimension p passing through x with $T_x N = E$. In other words, if C^{ω} Pfaffian system is involutive, it has C^{ω} solutions.

If the Pfaffian system (I, J) is involutive, it does not imply any additional equations and the map $V(I, J) \to M$ is surjective or it satisfies the Frobenius condition $d\theta^{\alpha} = 0 \mod \theta$. Even if the map $V(I, J) \to M$ is surjective, still it may happen that the Pfaffian system implies additional equations.

Definition 1.6. Let (I, J) be a Pfaffian system with independence condition on M such that the map $V(I, J) \to M$ is surjective. Let

$$M^{(1)} = V(I, J) \subset G_p M.$$

Define the **first prolongation** $(I^{(1)}, J^{(1)})$ to be the restriction to $M^{(1)}$ of the canonical Pfaffian system of G_pM . Define $(I^{(q)}, J^{(q)})$ to be the first prolongation of $(I^{(q-1)}, J^{(q-1)})$ inductively for q = 1, 2, ...

Cartan and Kuranishi showed it can happen that $(I^{(1)}, J^{(1)})$ is involutive while (I, J) is not.

Theorem 1.7 (Cartan-Kuranishi, [?]). Given a Pfaffian system (I, J), there exists q_0 such that for $q \ge q_0$, $(I^{(q)}, J^{(q)})$ are involutive (under a mild regularity assumption).

References

- R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, *Exterior differential systems* (1991), Springer-Verlag, New York, Berlin, Heidelberg.
- [2] R. Bryant, P. Griffiths and D. Yang, Characteristics and existence of isometric embeddings, Duke Math. J. 50 (1983), 893-994.